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Exam  
Physics of Lasers 2014 
Apr 1, 2014 14:00-17:00  

Room 5118.-156 
 

    
• Write only your student number on each exam sheet 
• Write the answers in the space provided on these sheets 
• Read the questions carefully, and give complete answers  
• The exam consists of 6 questions; maximum score for each question 

is 10 point 
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1a. The radius of curvature of a Gaussian laser beam can be determined by 
considering the solution to the parabolic equation as we did in class.  Write 
down the term in the solution to the propagation equation that provides the 
radius of curvature as a function of distance (1pt).  Draw a graph of the radius 
of curvature as a function of propagation distance (2pts).  (Bare in mind that 
in our definition from class we defined w = w0 when z = 0.) 
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1b.  By taking a derivative of the radius of curvature with respect to distance, 
find the distance along the propagation direction where the radius or 
curvature is minimum (3pts). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c. The answer with which you arrived above is a very important length scale 
in Gaussian beam optics and is referred to as the confocal parameter.  What is 
the beam radius or diameter of the electric field at a distance equal to the 
confocal parameter (4pts)  (note: I am not asking for the radius of curvature, but 
rather the physical beam radius)? 
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2a. Consider a resonator constructed using a two concave (R>0) mirrors of 
equal radius of curvature separated by a distance L.  Write the two stability 
parameters for this two-mirror arrangement (1pt). What are the limits on L 
such that we have a stable resonator (4pts)? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b.  We similarly saw in class that we could use ABCD matrices to arrive at 
the same stability criteria.  Draw a simple two mirror cavity and write down, 
in appropriate order, the ABCD matrices that will lead us to the famous 
(A+D+2)/4 stability result (1pt).  ( Note: you are not being asked to multiply 
the matrices.)   The following two matrices may be of assistance: 

  ,           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⎟
⎠

⎞
⎜
⎝

⎛
10

1 d 1 0

−
2
R

1

"

#

$
$
$

%

&

'
'
'



5 
 

 
2c.  The waste size in a resonator is given by the following expression: 
 

 
 
Find an approximate expression for the beam waste of a confocal resonator 
(gi=0) (2pts). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d.  Using the expression for the beam waste given in question 1, find an 
expression for the waste size at the mirror position (3pts) (The definitions of 
problem 1 may be of assistance.) 
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3a. As we learned in class, there exists a Fourier Transform relation between 
the temporal extent of a waveform in time and its frequency components: 

 
Calculate the Power Spectrum |f(ω)|2 of a wave train given by (5pt): 

E(t) = exp(iω0t) for −
τ 0
2
< t < τ 0
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3b.  Sketch the function you arrived at above (1pts). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c.  We can recognize the width of the power spectrum above to be inversely 
proportional to the ‘time’ over which the ω0 oscillates.  We could also frame 
this in the language of temporal coherence, namely, the spectral width and 
the coherence time are inversely related.  Beginning with the relation f λ = c , 
calculate the coherence time of a light source centered at 500nm with a 10nm 
bandwidth (4pts). 
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4a 

 
Consider this three level lasing system. Write down the rate equations for the 
three levels, without considering the lasing transition and energy density in 
the cavity.  In doing so, consider all the mechanisms that result in transfer of 
populations from one level to another.  Label them in the figure (3pts).  
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4b.  The population inversion in such a three level laser system can be 
calculated based on the above equations to be: 

 
 
The threshold population inversion is then a complicated function of both the 
various relaxation rates and the pumping rate Γ.  Find	
   an	
   expression	
   for	
   the	
  
pumping	
   rate	
   that	
   leads	
   to	
   a	
  population	
   inversion	
   (3pts).	
   (note	
   the	
  population	
  
inversion	
  in	
  our	
  notations	
  is	
  when	
  ΔN<0)	
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4c.	
  Sketch	
  a	
  couple	
  of	
  curves	
  for	
  the	
  population	
  ΔN	
  in	
  this	
  three	
  level	
  system.	
  	
  
Consider	
  a	
  few	
  cases	
  of 

γ32
γ21

 

 
and sketch them as a function of Γ γ32 (2pts). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d.  Describe how we obtain a population inversion in a three level lasing 
system. Your description should include a discussion about the relative 
transition rates and how one achieves an inverted population between the 
lasing levels (2pts). 
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5a. One of the criteria for making a laser resonator is that an integer number 
of wavelengths must fit inside it (nodes at the mirrors).  Write down the 
possible frequencies of oscillation of a resonator whose length is L (2pts).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b.  What is the “mode separation”, the distance in frequency between modes 
(2pts)? 
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5c.  The width of the resonance is determined by the mirror reflectivity to be 

 
 
sketch this function for a single cavity resonance as a function of mirror 
reflectivity R (2pt).  What happens as R approaches 100% (2pt)? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d.  Within 5%, what is the reflectivity of a silver mirror at normal incidence 
for visible radiation (1pt)?  Describe one method for obtaining a reflectivity 
approaching 100%?  (1pt) ( in case you need them, for silver n=0.07 and k=4.2) 
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6a.  The practicum had us construct a laser from scratch.  What type of laser 
was it (1pt)?   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. what was lasing wavelength (1pt)?  What was the pumping wavelength 
(1pt)? ( a range of wavelengths will suffice) 
 
 
 
 
 
 
 
 
 
 
 
 
6c. Our lasing material was a four level system, which in principle shouldn’t 
have a threshold for population inversion.  Yet in the experiment we saw a 
threshold in output power.  What is the difference between these two 
concepts (2pts)?  Draw a curve for steady state output power as a function of 
pumping rate (1pt). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14	
   
 
6d. 

 
 
ω0 is the central frequency of our lasing material, γ is its linewidth.  ωc is a 
nearby cavity mode and Qc is the cavity quality factor. 
 
The expression for ‘mode pulling’ allows us to calculate the actual lasing 
frequency of a laser system based on the parameters of the cavity and those of 
the lasing material.  In the case of the practicum laser, was there mode 
pulling?  Include in your answer a description of mode pulling, where it is 
likely to be found, and why or why not we should see it in the practicum laser 
(3pts). 
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